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Conduction in granular metalethe effect of the grain 
separation distribution 
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Department of Eleclrical Engineering, Technical Univemity of Rresz6w. Wtncentego Pola 2, 
35-959 Rzesz6w, Poland 

Received 24 March 1993 

Abstract. A charging energy model of conduction in granular metals has been considered. It 
has been shown that the temperature dependence of the DC conductivity, a - e ~ p [ - ( T l / T ) ~ / ~ ] .  
interpreted as a c~ussover bemeen high- and low-temperature behaviour can in fact be explained 
as resulting fmm Aat p m  of both the density ofstates and Lhe distribution of Nnnellingdiswnces. 
It has also been shown that such distributions can appear in real mefa-insulator composites. 
Models of hopping conduction in regular lattices and in continuous systems of hard and soft 
grains have been proposed. A comparison wifh expenmen& has been given as well. 

1. Introduction 

Granular metals are metal-insulator composites formed from small nanometre sized 
interdispersed metal and insulator grains. They are usually produced as films grown by 
co-evaporation or co-sputtering. Depending on the metal volume fraction $ there are two 
regions of electronic conduction in granular metals. When the concentration of metal is 
small, metal gains form isolated islands embedded in an insulating matrix. Thii region is 
called the dielectric region. As the metal volume fraction increases, islands form an infinite 
metallic cluster which spans the whole sample. This is the metal-insulator transition to the 
metallic region where the temperature coefficient of resistance is positive. In this region the 
DC conductivity, u,  fits the percolation power law (Kirkpatrick 1973) u - ($ - &)f. 

Values for the percolation threshold & lie within the range 0.16-0.6 (Deutscher et al 
1983). The lower part of this interval comesponds to the so-called random composites, 
whereas the upper part is typical for granular materials (Abeles et al 1975a, McAlister 
et al 1985). Thus in most cases & exceeds the Scher-Zallen (1970) invariant of 0.16. 
This is explained in terms of dimensionality effects, namely a crossover from 3D to 
2D behaviour (McAlister et al 1985, Gadenne and Gadenne 1989). correlation effects 
(preferential nucleation in metal grains) (Cohen et af 1978) and segregation effects (Balberg 
and Binenbaum 1987a) (random close packing predicts $c = 0.64). Values for the exponent 
t have been found to vary between 1 and 2 (Abeles et a1 1975a, Deutscher and Rappaport 
1979, Deutscher et a1 1983, McAlister et al 1985, Balberg er al 1990), in good agreement 
with percolation theory predictions for ?D and 3D (see e.g. Stauffer 1985, Kolek and Kusy 
1988). 

in the dielectric regime, electrical conduction i s  by electron hopping between metallic 
grains. In this process charge carriers are transported from one grain to another via thermally 
activated tunnelling. The temperature dependence of conductivity in this region has been 
widely observed to behave as 

u - exp[-(~l/T)'/'] (1)  
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(Sheng et al 1973, Abeles et al 1975a.b. Chui et a1 1981, McAlister et al 1984, 1985, 
Gilabert et al 1989). A similar temperature dependence has also been observed for 
heavily doped semiconductors. It is commonly argued that, in semiconductors, equation (1) 
originates from variable-range hopping in the Coulomb gap (Efros and Shklovskii 1975, 
Shklovskii and Efros 1984). This approach has also been extended to granular metals (Chui 
etal 1981, Entin-Wohlman etal 1983, Chui 1991). Another approach interprets equation (1) 
as a crossover from high-temperature Arrhenius behaviour U - exp(-EH/T) to the low- 
temperature behaviour of Mott’s variable-range hopping law CT - exp[-(T~/T)’/~] (Sheng 
and Klafter 1983, Klafter and Sheng 1984, Chen etal 1990, Zhou et al 1992, Sheng 1992). 
Both approaches have been criticized in a number of papers by Adkins (1982, 1987, 1989). 

This paper deals with the second approach, with the aim to point out the importance 
of the distribution of intergrain separations. We show, in particular, that dependence (I)  
results in fact from a flat or nearly flat distribution of intergrain separations. The rest of the 
paper is organized as follows. In section 2 we detail a model to be considered. In section 3 
we analyse this model using a critical path method. Section 4 contains a discussion on 
the range of validity of equation (1). The question of how this range is influenced by a 
distribution of tunnelling distances is also answered. As a result two models for hopping 
conduction in systems of penetrable and impenetrable spheres are proposed in section 5 and 
6. Finally in secfion 7 we provide comments on the criticism of the model given by Adkins 
(1982, 1987) and summarize our findings. 

2. Model 

The most recent description of the model we are going to deal with was given by Zhou et a1 
(1992). In this model conductance Gi, between grains i and j is expressed as the product 
of the probabilities for thermal activation and tunnelling (Miller and Abraham 1960) 

(2) 

where x is the decay rate of the electron wave function in the insulator, sij is the distance 
between two grains, k is Boltzmann’s constant, T is absolute temperature and Eij is the 
activation energy given by Eij = i(IEiI + lEjl+ IEi - EjI). Here Ei denotes the grain’s 
energy level. For each grain i energy El is the sum of two components: the grain’s charging 
energy E, and the energy in a random potential field (Adkins 1987, Chen et al 1990, Zhou 
et al 1992, Sheng 1992). The grain’s charging energy is the energy required to place a 
charge on a neutral grain. For a spherical particle of diameter D its capacitance C = f 0 / 2  
and the charging energy E, = eZ/2C = e2 /cD.  Here E is the effective dielectric constant 
of granular material, which can be different from that of an insulator (Abeles et a1 1975b. 
Sheng and Klafter 1983). Since the charging energy is inversely proportional to grain 
diameter, a distribution of grain sizes leads to a distribution of charging energies. Thus we 
have (Adkins 1982, 1987, Chen et al 1990, Zhou etal 1992, Sheng 1992) 

Gi j  = Goexp(-2xsij - Elj/kT) 

N(&) = ( 1 / 6 p E C )  exp[- ln2(Ec/E~)/2w21 (3) 

because a log-normal distribution of grain sizes has been observed in real mixtures (see 
e.g. Granqvist and Buhrman 1976, Romanowski and Qpiliski 1980, Grannan etal  1981). 
Above EO and p are the median value and standard deviation of Ec. They correspond to 
the median and standard deviation of the grain size disiribution. Measurements show that 
p lies in the range from 0.2 to 0.5. 
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EIE, 

Figure 1. The density of grain energy levels. as in 
equation (4), which includes both the effects ofcharging 
energy and the disordered potential. Eo is the median 
energy. The standard deviation p for which the plot is 
drawn is 0.3. A dip in the density of states, m k e d  
by a broken CUN~, appears when a smooth function, 
rounding off the discontinuities of the distribution of 
the random potential at +Ec is used in equation (4). 

(S + D)ID 
Figure 2. The distribution of separations between the 
cenvai grain. which is taken to be at the origjn, and 
the centres of the remaining grains in B system of 
penevable spheres (full curve) and inpenetrable spheres 
(broken curve). D is the sphere diameter and n is the 
numberdensity. In the case ofpenettable grains NO) = 
4r(D + ~ ) ~ n .  For impenetrable spheres N(s) = 0 for 
s < D. The delta function represents spheres which 
exactly touch the central grain. 

The presence of a large disordered potential in granular metals has been observed 
experimentally in a number of field-effect measurements on discontinuous metal films 
(Adkins er a1 1984, Adkins 1990). This random potential can locally shift the grain’s 
energy Ec. This shift however cannot be greater that &E, since, otherwise, the grain can 
change its charge state (autoionize) and move closer to the Fermi level. Thus if we assume 
that the distribution of random potential f ( E )  is uniform within &E,, i.e. f(E) = $E, 
for /E( c E, and f ( E )  = 0 other\nrise, we can calculate the spectrum of charging energies 
modified by a random potential (Adkins 1987, Chen et a1 1990, Zhou et al 1992, Sheng 
1992) 

If a smoother function f ( E )  is chosen in equation (4), in order to temper discontinuities in 
the distribution of the random potential at &E, a small dip at E = 0 appears in p(E), as is 
shown in figure 1 (Zhou et al 1992, Sheng 1992). This is in agreement with what has been 
observed in tunnelling experiments (Abeles etaf 1975b). This explanation of a gap existing 
in the density of states at the Fermi level differs reasonably from that of Entin-Wohlman er 
af (1983) who found the origin of the gap as a typical EfrosShklovskii (1975) correlation 
Coulomb gap. It is seen in figure 1 that the spectrum of grain energies has a fiat part near 
E = 0. For such a defined model it was shown by the number of numerical calculations 
that the overall DC conductivity, U, follows the law -]nu - T-I’’ over several orders of 
magnitude in conductance and over more than a decade in temperature (Chen et al 1990, 
Zhou et al 1992, Sheng 1992). The observed relation has been explained as a crossover 
between high- and low-temperature behaviours. 



To my knowledge no analytical derivation of equation (I), in terms of the model 
described above, has been given. It has even been stated that equation (I)  does not arise as 
a characteristic dependence (McAlister et nl 1984). so at the moment the question of why 
the value of 

The basic idea of the above model is the concept of charging energy. The large effect 
of this energy on the conduction in  granular metals was first considered by Neugebauer and 
Webb (1962) and next by Sheng et a1 (1973) and Abeles et al (1975b) who were able to 
explain the - lno  - T-’/’ dependence, however they assumed correlations between grains 
sizes and intergrain separations. Because no such correlations have been observed (Simanek 
1981, Moms et al 1990) Sheng and Klafter (1983) and Klafter and Sheng (1984) rejected 
grain sizdseparation correlations but argued that the dependence - lnu - T-]/* results 
from interpolation between high- and low-temperature behaviour, as we have mentioned 
above. 

fits this crossover in the best way seems unanswerable. 

3. Critical path analysis 

In this section we apply the critical path method (Ambegaokar et al 1971) to the model 
described above. It was shown by numerical calculations on regular (Beman etal 1986) and 
random (Priolo eta! 1992) networks that if intersite conductances Gij are widely distributed, 
the overall conductance of the network is determined by the so-called critical conductance 
C ,  i.e. U - G,. The latter is described as the largest value for Gi, which can be removed 
from a network without cutting it off. In other words, the subset of bonds with Gi, z G ,  
forms a network which is at the percolation threshold, the so-called critical network. It 
is well known, however, that the critical network should contain on average E ,  bonds per 
site. In the case of a d-dimensional discrete lattice, Bc = pEz  where pc  and z are the bond 
percolation threshold and lattice coordination number, respectively, and B, was shown to be 
approximately invariant, B, CT d/(d - 1)  (see e.g. Kirkpatrick 1973, Shklovskii and Efros 
1984). The find G ,  note that the bonds which form the critical network should satisfy the 
bonding criterion, Gij > C ,  which can also be rewritten in the form (Ambegaokar et al 
1971, Sheng and Klafter 1983) 

sij/Sm+~(IEiI+IEjI+IEi-EjI)/Em < I (5) 

where s, = In(Ga/GC)/2X and E ,  = In(Go/G,)kT are the maximum allowed tunnelling 
distance and the maximum allowed energy of the grain. Thus to form the critical network 
it is required (Sheng and Klafter 1983, Halpern 1987) that 

1, dEip (E i )SEm -Em d E j p ( E j ) ~ - ~ ” d r , j N ( r i j ) / S E .  - E .  dEi p(Ei) = Be 
E, 

(6) 

where N ( s ; j )  is a distribution of tunnelling distances and max sij is the maximum distance 
which satisfies condition (5) for a given set of E, and E j .  Now we apply a critical 
path method to the model described in section 2. First let us solve equation (6) for 
the range of temperatures where both the distributions i.e. the density of states and the 
distribution of tunnelling distances, can be treated as constants. In this case we have 
p = p(E -+ 0) = ey‘/z/2ED and N ( s i j )  = N(s)  = z / A  if only hops to the nearest (2) 
neighbours are allowed and tunnelling distances are uniformly distributed on the lattice 
spacing A .  In the case when n grains of diameter D are randomly dispersed in the unit 
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volume, the density of nearest neighbours is approximately N ( s )  = 4nD2n, which is a 
good approximation as long as the distance s is small compared with the grain diameter D. 
Thus we have 

2 B, = s,Empz/2A or Bc = smE,2rrD n. 

These relations immediately lead to equation ( I )  with the characteristic temperature T, 

TI = 4AxBC/zpk Or T, = XB,/nD’npk = BCxD/6&k (7) 

for percolation on a lattice or on a random arrangement of grains, respectively. In the latter 
case we have replaced the number density n by the metal volume fraction q3 = nxD3/6. 
The results obtained are in good agreement with numerical calculations of hopping on a 
regular lattice (Chen et af  1990), as well as on a random set of grains (Sheng and Klafter 
1983). 

Now let us turn to the low-temperature limit. In this region the low-energy part of the 
density of states p(E) is probed (to minimize the Ei,/kT term of Gij), so a constant density 
of states approximation remains valid once more. Simultaneously longer hops are allowed 
(of order E,,/kT) and the approximation of a constant density of tunnelling distances no 
longer holds. In the case when only nearest-neighbour hops on the lattice are allowed N(s) 
vanishes for s > A. In the case of a random arrangement of grains, longer hops are possible 
and N(s)  = 4n(D+s)’n Y 4ns2n fors >> D. The last approximation is however resbicted 
to a very small metal volume fraction 4, where interactions between grains and screening 
effects can be neglected. The critical path method applied in this case yields 

Bc = (zpEm/2)(3 - 3A/sm + A’/& (8) 

or (Ambegaokar etal 1971, Sheng and Klafter 1983) 

B, = constant x npsiE, (9) 

for nearest-neighbour hopping on a discrete lattice or on a random set of grains in the limit 
4 + 0, respectively. Equation (8) leads to Arrhenius-type behaviour 

cr - G, rr Goexp(-2Ax)exp(-EL/kT) (10) 

with activation energy 

EL 2 2BC/3pz. (11) 

We can view the above result more qualitatively. For low temperatures, EijlkT becomes a 
limiting term in Gij. Since Eij are strongly correlated (Eij and Ejk are correlated through 
E,) percolation occurs through sites with minimal energy. The activation energy is the 
minimum energy required to reach the percolation threshold 

dE  p(E) = xc (12) 

where x, denotes the site percolation threshold. Combining equations (11) and (12) we 
obtain 

L: 
4 

X c  = 4B& = ?pc  
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which can be found as an approximate relation between site and bond percolation thresholds. 
In the case of a random arrangement of grains, equation (9) leads to the well known 

Mott behaviour -]nu - Thus we have shown in a quantitative way that the 
model described in section 2 exhibits a Iow-temperature behaviour, qualitatively described 
in section 1. At this point we can state that this model serves as an explanation for 
experiments on granular metals, in which the temperature dependence of conductivity is 
well fitted by -ha - at very low temperatures and by the - Ino - T-'D law 
as the temperature moves to higher values. Such a behaviour was observed, for example, 
in co-sputtered Au-Si02 films (McAlister et ai 1984, 1985) and Pt-AI203 and Au-AI203 
cermets (Gilabert er a1 1989). 

Finally let us consider the high-temperature limit. In this case thermal activation is easy 
and the tunnelling part of Gij becomes a limiting factor. Short hops are preferred, so a 
constant distribution of tunnelling distances is a reasonable approximation. For sufficiently 
high temperatures we have E,  >> 2/20 and p ( E )  N 0 and J p ( E )  dE = 1 can be used in 
calculations of the average number of bonds per site 

Bc = s,(I - 5Eo/6E&N@) ( 13) 

where, as we discussed earlier, N(s )  takes z / A  in the case of hopping on a regular lattice or 
47rD2n when a random arrangement of grains is considered. As we expect, equation (13) 
yields a simple Arrhenius law 

with an activation energy EH = 5Eo/6. We find this result correct because, at high 
temperatures, correlations among intergrain conductances Gij are small. The conducting 
network is formed from bonds of lowest conductances (distances). Thus the activation 
energy should be equal to the average value for intergrain energies Eij which indeed, in the 
case of a constant density of states, were found to be 5&/6 (see e.g. Shklovskii and Efros 
1984). Thus we halve 

Since the terms Ei j /kT  at high temperatures are small, the conductivity, U, is determined 
by the largest tunnelling distance, SH. required to form a percolating network, which can be 
found from the appropriate percentile of the distribution of tunnelling distances 

which qualitatively explains the result obtained in equation (14). 

4. Range of vdidity of -In U - T-'la law 

Now let us comment on the temperature region in which the fractional dependence 
-In U - T-'/' is valid. First, let us note that as the temperature is lowered, the conductivity 
U decreases (see equations (14), (lo), (I)). This means that the distance, snit. of the critical 
hop increases as the energy, E,",. of the critical hop decreases due to T being lowered. 
In the temperature range where the relation - In U - T-'l2 holds, a competition between 
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tunnelling and activated terms of Gi, occurs, so that both components of the exponent in 
equation (2) are comparable to each other and vary with temperature in the same way 

Thus the temperature range, where - Inu - T-'/' holds, corresponds to the range of 
distances s in which the critical distance, scrit. can vary and in which the distribution 
N ( s )  is approximately constanr The distance sctiit is limited both at low temperatures, 
scrit < SL = A, c SL < D and at high temperatures, scri, z s~ (see equations (14). 
(15)). so the region of validity of the - I n o  - T-'12 relation seems to be narrow. For 
example, in the case of hopping on a simple cubic lattice we have sH = A&/z  = Ap,,  
SL = A ,  SL/SH = l/p, Y 4 which, according to equation (16). corresponds to TH/TL = 16, 
where TH and TL are the high- and low-temperature limits of the dependence - In  U - T-'/'.  
Although most experimental data can be completely covered by such a temperature variation 
(Abeles et a1 1975a, b, Sheng et nl 1973, McAlister et nl 1984) there are some which exhibit 
a -Inu - T-"' dependence over the range TE/TL N 200 (Chui et al 1981). In our 
opinion this is the main reason for the criticism of the nearest-neighbour model of hopping 
conduction in granular metals. However, we should notice that the ratio of the limits of 
critical hops 

SL/SH = l/pc = z / B ,  

can easily be increased if further hops, for example to second-nearest neighbour or third- 
nearest neighbour, are allowed. This has an effect of increasing the lattice coordination 
number, z,  reducing the value for the percolating threshold and, as a result, increasing 
the ratio SL/SH. For example, if on a simple cubic lattice hops up to the thiid-nearest 
neighbour are possible, then z = 26 and sL/SH Y 17, which is sufficient enough to support 
the dependence - Inu - T-'/' over TH/TL = 17' = 289, which is greater that the reported 
value TH/TL E 200. In granular metals there are, however, other effects which can lead to 
an increase of the ratio SL/SH. The first is that some grains touch each other, so to form 
a percolating cluster much smaller number of tunnelling bonds is necessary. This lowers 
the value for SH and the ratio increases. This effect is especially important near 
the metal-insulator transition, where the size of the metallic clusters and thus the number 
of metallic connections is large. Another effect is the change of the radii distribution 
function. The number of grains lying a distance s from a given central particle equals 
N ( s )  = 4n(D + s)'n only in the case of non-interacting, fully penetrable, grains. For 
interacting, impenetrable, hard grains N ( s )  is modified in a way shown schematically in 
figure 2. This effect is again more and more significant as the metal volume fraction 
increases. Finally let us note that screening of further grains by the nearest neighbours 
also leads to a flattening of N ( s ) .  All the effects mentioned above make the assumption of 
a constant distribution of tunnelling distances quite reasonable. Interestingly, according to 
what we have just said, the temperature range in which the law -In  U - T-"' holds should 
be smaller for cermets, which are deep in the dielectric regime, and it should increase as 
the metal-insulator transition is approached. Such a rule could be observed when analysing 
experimental data. The ratio S L / S H  = (TH/TL)'/z deduced from plots of -1nu - T-'/' 
increases from approximately 1.25 for @ = 0.04 or 1.7 for @ = 0.08 (Abeles et al 1975b) 
to 3.5 for q5 = 0.4 (Abeles ef al 197%) or even to 14 for the samples which are very close 
to the metal-insulator transition $c (Chui et al 1981). In the following sections we will 
try to incorporate some of the effects already mentioned in a more quantitative way for the 
systems of interacting and non-interacting spherical particles. 
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5. Hopping conduction in a system of penetrable grains 

The system of fully penetrable spherical grains has been found as a very realistic model of 
metal-insulator composites (see e.g. Feng etai 1987 for a review). The model was called an 
'inverted random void model' and it was extensively studied above the percolation threshold. 
which was found at & 2: 0.3 (see e.g. Balberg and Binenbaum 1987a, b. Shklovskii and 
Effros 1984). The system consists of spherical grains of diameter D with centres randomly 
(Poisson) distributed in 3D space. Since grains can overlap, the volume fraction of the 
metallic (grain) phase relates to the excluded volume through (see e.g. Shklovskii and Efros 
1984) 

6 = 1 - exp(-(nD3/6)n) 

where n is the concentration of grain centres (the number density). The average number of 
grains which overlap a given grain, i.e. the number of metallic bonds per grain (site) B ,  is 
given by the number of centres included in a sphere of radius D 

B = '$rD3n. 

The volume fraction of metal $ can thus be also expressed as 

4 = 1 - exp(-B/8). 

Below the percolation threshold, for 4 e &, B is too small to form a percolation cluster. 
To form such a cluster B is required to equal E, = -8 In(1 - &) N 2.8 (Shklovskii and 
Effros 1984, Balberg and Binenbaum 1987b) bonds per site. Thus metallic bonds should 
be completed by the number of tunnelling connections to reach B, 

Following the analysis of section 3 with a constant density of states p, and a uniform 
distribution of tunnelling distances N ( s )  = 4nDZn = -241n(l - @)/D, we again obtain 
the fractional dependence of equation ( I ) ,  with 

TI = 4xD W l  - - @)1/3pkMl - $1. (17) 
As we have already discussed in section 4 the range of validity of - Ino  - T-'I2 is rather 
wide, especially near &. In this case the difference B - Bc, which should be put in the RHS 
of equation (15) to determine SW, the high-temperature limit of tunnelling distances, tends 
to zero, and sL/ s~  increases significantly. We can rewrite equation (17) in the form which 
takes into account relations between p. Eo and D ,  p 2 +Eo, Eo = eZ/6D 

Ti = vIBld(1 -&)/(1 -@1/3klN -@)} (18) 
where 7 = e2x/6. To test our result we fitted some of the experimental data to equation (18). 
as is shown in figure 3. The value q = 0.23 eV, for which equation (18) is drawn in figure 3, 
is only an order of magnitude smaller than the expected value 17 = 3.8 eV, This discrepancy, 
however, can be understood if we note that the permittivity of an insulator, which was used 
to calculate the value 3.8 eV, can differ from that of granular metal (Abeles et al 197Sb. 
Sheng and Klafter 1983). In fact, E is q5 dependent, which can additionally modify the 
dependence of versus 6 in figure 3. As we can see in figure 3, there are also data 
that cannot be fitted by equation (IS) because they exhibit a much greater value for the 
percolation threshold than cPc N 0.3. In this case a model of impenetrable grains seems to 
be more adequate. (The immediate advantage is that it exhibits & = 0.64 (see Balberg and 
Binenbaum 1987a, b).) 
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T, x 1 0-3 
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metal volume fraction q4 
Figure 3. The temperature TI, which acts in the dependence -In< - ( T L / T ) ' / ~ .  Curves 
are dnwn according to equations (18) (full) and (20) (broken) which are derived for hopping 
conduction models of penetrable and impenetrable gains, respectively. The points refer to 
experiments reported by Abeles et 01 (1975% b). 

6. Hopping in a system of hard grains 

In a system of spherical particles which cannot overlap, the critical volume fraction rises 
to @c N 0.64 (see e.g. Balberg and Binenbaumm 1987ab) which is the random close 
packing limit. It has also been shown that at percolation the average number of bonds (the 
number of touching grains) per grain drops to about 1.5 (Balberg and Binenbaum 1987b). 
Thus Bc = 1.5 should be used instead of 2.8 in further calculations. By analogy to lattice 
percolation we can relate linearly the average number of bonds per grain, B,  with the grains' 
(metal) volume fraction q4. For 4 < @c there is also B c Bc and the number of tunnelling 
bonds required to reach the percolation threshold is 

In a system of impenetrable spheres the distribution of tunnelling distances is changed in 
the way shown in figure 2. Since we do not know the exact form of N(s ) ,  only approximate 
calculations are possible. If we neglect the effect of the changed form of N(s)  for s > D 
and solve equation (19) for N ( s )  = 4aD2n = 24@/D, i.e. for the lower bound of NO), 
we obtain equation (1) with temperature Tj 

TI = (Bc/3k)(1/4 - 1 f c ) i l .  (20) 

In figure 3 we plot equation (20), trying to fit the data with larger values for q5c. The 
parameter = 0.9 which we used is quite reasonable if we realize that in fact the lower 
bound of N ( s )  has been used to obtain equation (20), and all the comments on the effective 
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permittivity made in section 5 remain valid for the system of hard grains. A further study 
using the exact form of N(s) is certainly needed at this point. Granular metals show a more 
complicated morphology which probably can be treated as an intermediate case between 
hard (impenetrable) and soft (penetrable) core limits, and equations (18) and (20) should be 
treated in the same way when fitting experimental data. 

7. Sununary 

The approach presented to explain the relation - ] n o  - T-'l2 as hopping on sites 
with energies and separations uniformly distributed in energy and physical space has 
been proposed by Simanek (1981). It was questioned because it could not account for 
the wide temperature range through which -lnu - was observed (poll& and 
Adkins 1992). The temperature range for which the model works well is restricted to 
TH/TL = (SL/SH)' N p;', which is less that the values observed in  experiment (Chui et a[ 
1981). In sections 4 to 6 we have shown how this criticism can be avoided if we allow 
electron hops to further neighbours and if we consider the role of metallic connections in 
forming the percolating network. Another criticism of Simanek's approach was that in order 
to derive the dependence - lnu - ?"-I/'. he optimized independently tunnelling distances 
and activation energies, which is clearly not the case (Adkins 1990). In our derivation a 
path of conductances Gij is optimized. 

Within the last few years some doubt has appeared as to whether the law - I n n  - ?"-'Iz 
can be observed in the model defined in section 2 (Adkins 1982, 1987). In the model 
analysed by Adkins (1982, 1987) a log-normal distribution of tunnelling distances was 
assumed. For such a system a simple activation, i.e. a linear dependence of Inu versus 
inverse temperature, has been found. To obtain the bulk conductivity, U, the effective 
medium theory (Kirkpahick 1971) has been used. Unfortunately this method works 
well only with uncorrelated bond percolation problems and thus does not incorporate an 
important correlation effect among neighbouring connections. The hopping problem is in 
fact a site-bond percolation which crosses over to a pure bond (uncorrelated) percolation 
at high temperatures and to a pure site (correlated) percolation at low temperatures. 
This crossover is very important because it results in increasing the ratio of limiting 
activation energies &/EL. As we have shown in our analysis this ratio takes the value 
E H / E L  = ( 5 E 0 / 6 ) / ( 2 B C / 3 p z )  rr. 25 for hopping on a simple cubic lattice. The greater 
the ratio E H / E ~ ,  the wider the region of hopping with decreasing activation energy, where 
the law - Inu - T-'/' is observed. Indeed this was observed in a number of numerical 
simulations (Chen etal 1990, Zhou etal 1992. Sheng 1992). If correlations between bonds 
are neglected, the problem is simplified to a pure bond percolation and a distribution of 
the bond's conductances can be used to solve the task. The effective medium theory or 
the critical conductance approximation (TyE and Halperin 1989, Le Doussal 1989) can be 
used in this case to find the bulk conductivity. Independent of the method used, limiting 
high- and low-temperature activation energies can be easily deduced. As T -b 00, EH takes 
(E,]). the average value for the intergrain energies distribution. As T + 0, a percolating 
network is formed from bonds with the lowest Ejj ,  so E L  can be found from the appropriate 
percentile of P ( E j j ) ,  the intergrain energy distribution 
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If the critical conductance approximation is used [Y = p c ,  whereas [Y = I /d  when the 
effective medium theory is used (Adkins 1982)t. This is obviously incorrect because in 
fact this percolating network is formed from bonds connecting sites of smallest energy 
E,. For [Y = I /d  and distributions P(Ei j )  calculated from N ( E , )  (equation (3)) or p(E)  
(equation (4)). used by Adkins (1982, 1987), we obtain E H / E L  rr 1.4 in both cases. Thus 
the approach in which a hopping mechanism is simplified to bond percolation causes the 
region of conduction with decreasing activation energy to be strongly reduced. Instead of 
- I n o  - T-’/*, only a simple activation with energy E L  (because of the analysed region of 
temperatures) has been detected. Similarly, if we neglect interbond correlations and apply 
the critical conductance approximation to the system with a flat distribution of tunnelling 
distances and constant density of states (which is the subject of the current paper), we obtain 
EH = :EO for T + W. E L  = EO- for T + 0 and, interestingly, -Inu - T-2 /3  
in the wansition regime. This dependence, however, will be difficult to observe because 
& / E L  rr 1.4 in this case as well. 

Summarizing, the charging energy model of conduction in granular metals has been 
analysed. It has been shown that the - Inu - T-’ l2  dependence, observed as a crossover 
between high- and low-temperature behaviour, can be explained as resulting from flattened 
parts of both the density of states and the distribution of tunnelling distances. It has also 
been stown that such distributions can appear in metal-insulator composites. When purely 
metallic connections between metal grains are taken into account, the temperature range, in 
which the relation - I n o  - T-’/’ is valid, is as wide as that observed for granular metals. 
In this case models of hopping conduction in systems of hard and soft grains have been 
proposed. A comparison with experiment can show us that these models work properly as 
models of conduction in granular metals. 
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